Extra Numerical Types for Common Lisp

Marco Antoniotti
mantoniotti at common-lisp.net

February 25, 2008

Abstract

This document presents a new set of portable type specifiers that can
be used to improve the “precision” of type declarations in numerical code.

1 Introduction

When working on numerical algorithms it is sometimes useful to further con-
strain the types of certain values to sub-intervals of the usual types present in
Common Lisp. A typical example is that of indices running over the dimen-
sions of an array: such integers values should not be negative. While several
Common Lisp implementations already have certain special “sub-interval” type
specifiers that can be used in implementation dependent code, it seems natural
and relatively uncontroversial to propose a set of specialized types that codify
usual mathematical numerical sets and intervals. This document puts forward
such a proposal.

The rest of this document is organized in two parts: a description of the new
types proposed, and a brief discussion pertaining the rationale and the foreseen
costs of adoption by the various implementers.

2 Description

The extra types are presented in terms of the original Common Lisp type they
partition. As it will appear in the following, most types are simply partitions
around the appropriate zero.

2.1 Numerical Sub-interval Types

There are several numerical types which represent traditional mathematical sets
in their representation-dependent implementations. The numerical types are the
following:

e negative-T



e non-positive-T
e non-negative-7'
e positive-T
e array-index

where T is one of fixnum, integer, rational, ratio, real, float, short-float,
single-float, double-float, long-float. Each of these types is defined in a
very straightforward way. The pseudo-code in the subsections hereafter shows
how each type can be defined.

2.1.1 FIXNUM Sub-interval Types

The subtypes of type fixnum' may be defined as follows. Note that fixnum
does not allow for compound type specifiers.

(deftype negative-fixnum ()
‘(integer ,most-negative-fixnum -1))

(deftype non-positive-fixnum ()
‘(integer ,most-negative-fixnum 0))

(deftype non-negative-fixnum ()
‘(integer O , most-positive-fixnum))

(deftype positive-fixnum ()
‘(integer 1 ,most-positive-fixnum))

The predicates following predicates are also defined in the most straightforward
way.

e negative-fixnum-p
e non-positive-fixnum-p
e non-negative-fixnum-p

e positive-fixnum-p

2.1.2 INTEGER Sub-interval Types

The subtypes of type integer may be defined as follows.

IThere is no class for fixnum in the ANSI specification , only a type. This is a consequence
of several factors and choices made in standardization process.



(deftype negative-integer ()
>(integer * -1))

(deftype non-positive-integer ()
>(integer * 0))

(deftype non-negative-integer ()
> (integer 0 *))

(deftype positive-integer ()
>(integer 1 %))

The following predicates are also defined in the most straightforward way.
e negative-integer-p
e non-positive-integer-p
e non-negative-integer-p

e positive-integer-p

2.1.3 RATIONAL Sub-interval Types

The subtypes of type rational may be defined as follows.

(deftype negative-rational ()
> (rational * (0)))

(deftype non-positive-rational ()
’(rational * 0))

(deftype non-negative-rational ()
’(rational 0 *))

(deftype positive-rational ()
> (rational (0) *))

The following predicates are also defined in the most straightforward way.
e negative-rational-p
e non-positive-rational-p
e non-negative-rational-p

e positive-rational-p



2.1.4 RATIO Sub-interval Types

The subtypes of type ratio may be defined as follows. Note that ratio does not
allow for compound type specifiers. Also, there are other technical difficulties
in this case if we wanted to be very coherent with the background of the ANSI
specification. ratios are defined exactly as the ratio of two non-zero integers,
whose greatest common divisor is one and of which the denominator is greater
than one?. This makes it very difficult to use the type specifier machinery
effectively, and we must resort to the satisfies type specifier. A possible
definition of the ratio sub-interval based on satisfies needs therefore the
definition of the ratiop predicate (which is absent from the ANSI specification)

alongside the ratio-plusp and ratio-minusp predicates.

(defun ratiop (x)
(and (typep x ’rational)
(> (denominator x) 1)))

(defun ratio-plusp (x)
(and (ratiop x) (plusp x)))

(defun ratio-minusp (x)
(and (ratiop x) (minusp x)))

These predicates could be implemented more efficiently by a given implementa-
tion.
Now it is possible to define the ratio types.

(deftype negative-ratio ()

’(satisfies ratio-minusp))

(deftype non-positive-ratio ()
’negative-ratio)

(deftype non-negative-ratio ()
’positive-ratio)

(deftype positive-ratio ()
’ (satisfies ratio-plusp))
The following predicates are also defined in the most straightforward way.
e negative-ratio-p
e non-positive-ratio-p
e non-negative-ratio-p

e positive-ratio-p

2A consequence of the definition is that, in general (typep 42 ’ratio) = NIL, and, in
particular, (typep O ’ratio) = NIL.



2.1.5 REAL Sub-interval Types

The subtypes of type real may be defined as follows.

(deftype negative-real ()
’(real * (0)))

(deftype non-positive-real ()
>(real * 0))

(deftype non-negative-real ()
>(real 0 %))

(deftype positive-real ()
’(real (0) *))

The following predicates are also defined in the most straightforward way.
® negative-real-p
e non-positive-real-p
e non-negative-real-p

e positive-real-p

2.1.6 FLOAT Sub-interval Types

The subtypes of the various float types may be defined as follows.

(deftype negative-T () ’(T * (zero)))
(deftype non-positive-7T () ’ (1T * zero))
(deftype non-negative-71 () ’ (1 zero *))
(deftype positive-T () (T (zero) *))

where T is one of float, short-float, single-float, double-float, and
long-float. Also, zero is written in the appropriate syntax; i.e.,

e 0.0EO for float types

0.080 for short-float types

0.0FO0 for single-float types
e 0.0DO0 for double-float types
e 0.0LO for long-float types

as per the ANSI specification.
The appropriate type predicates (whose names are not listed here) can be
implemented in the usual straightforward way.



2.1.7 ARRAY-INDEX Sub-interval Type

The array-index type is obviously useful and used in many implementations. It
is just not standardized. The definition of array-index could be the following
one.

(deftype array-index ()
‘(integer 0 (,array-total-size-limit)))

The array-index-p predicate can thus be defined immediately.

3 Discussion

The proposed types are obviously just a convenience, yet they may be used to
improve the “self-documenting” nature of programs. Some of the definitions are
directly useful. Looping through an array can be done in several ways, but often
one just forgoes to write down the proper index declaration or resorts to the
practically omni-present implementation-dependent equivalent of array-index.

The cost of adoption is very small for this facility. Legacy code is not affected
and new code may - as stated - become more self-documenting, and possibly
efficient.

Some of the names are long. This is in the tradition of Common Lisp. How-
ever, it would be possible to provide abbreviated versions by shortening them
using the following scheme

e negative becomes neg
e non-negative becomes nonneg
e positive becomes pos

e non-positive becomes nonpos

References

[1] The Common Lisp Hyperspec, published online at
http://www.lisp.org/HyperSpec/FrontMatter/index.html, 1994.



