Revisiting CONCATENATE-SEQUENCE

Christophe Rhodes*
October 30, 2006

Abstract

While doing work to support user-extensible sequences (Rhodes, [2007)), it was discovered
that the ANSI CL standard forbids integration of certain functions with not only user-extensible
sequences but also implementation extensions of sequence. Irrespective of the future of user-
extensible sequences, we argue that the restriction on implementations imposed by the wording
adopted is too stringent, and propose an alternative.

1 Introduction

In the X3J13 Issue CONCATENATE-SEQUENCE (Pitman} |1991)), the ANSI CL committee worried about
various cases of sequence type specifiers passed to the five functions make-sequence, map, merge,
concatenate and coerce. The essential problem which the CONCATENATE-SEQUENCE Issue addresses
is that a type specifier can specify a recognizable subtype of sequence| without unambiguously
specifying a concrete sequence type, needed because, except for a special case in |coerce, these
functions must create an object of the specified type.

For instance, the type |[sequence itself is a recognizable subtype of sequence however, the
desire was that the call (make-sequence ’sequence 8) should be in error; other such ambigu-
ous types can be constructed, such as (simple-array (*) *), (or bit-vector string), and
(and sequence (not (eql "foo"))); although types involving conjunction, disjunction and nega-
tion are not required to be recognizable subtypes of |sequencel, most current implementations rec-
ognize these examples as such.

However, the ANSI CL standard also specifies that an implementation may offer subtypes of
sequence| that are not 1ist|and vector:

The types [sic] vector and the type list are disjoint subtypes of type sequence, but are
not necessarily an exhaustive partition of sequence.

Pitman and Chapman| (1994, System Class sequencel)

Historically, this does not appear to have been a popular field for implementation extension;
at the time of writing, the author knows of no implementation purporting to conform to Common
Lisp which documents non-standard sequence types, though there exist undocumented hooks in
at least GNU Curisp (Haiblel 2006) which were used in a pre-CLOS implementation of generalized
sequences (Haiblel |1988]).

*Goldsmiths College, New Cross Road, London SE14 6NW, c.rhodes@gold.ac.uk

http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=sequence

In light of this standard definition of the |sequence class, and of the development of user-
extensible sequences, however, the wording for the Exceptional Situations of make-sequence over-
reaches the intent of the clarification of the CONCATENATE-SEQUENCE issue:

An error of type type-error must be signaled if the result-type is neither a recognizable
subtype of list, nor a recognizable subtype of vector.

Pitman and Chapman| (1994, Function make-sequence))

Similar requirements are placed on map, merge|, concatenate and |coerce,

This requirement does not permit an implementation to extend make-sequence to type des-
ignators for non-standard sequences, which does not seem to have been the intent behind the
CONCATENATE-SEQUENCE issue. We therefore propose the clarification, presented in the style of an
issue in the next section.

2 Issue CONCATENATE-SEQUENCE-AGAIN

Issue: CONCATENATE-SEQUENCE-AGAIN.
References: |coercel concatenate, make-sequence, map, merge, [Pitman, (1991)).
Category: Clarification / Change.

Problem Description: The specification says that an error must be signalled in cases when a
type specifier passed to make-sequence is not a recognizable subtype of either 1ist| or vector.
This prevents integration of non-standard sequence types, expressly permitted by the description
of 'sequencel, with the standardized sequence functions.

This also affects coerce, concatenate, map and merge.

Proposal (CONCATENATE-SEQUENCE-AGAIN:GENERALIZE):

e Remove from make-sequence, merge, map| and |concatenate| the requirement that “An error
of type type-error must be signaled if the result-type is neither a recognizable subtype of list,
nor a recognizable subtype of vector.”

e Specify that if a type specifier is a recognizable subtype of |sequence, and is recognized by the
implementation as specifying a concrete subtype of sequence, then a sequence of the specified
type is returned from coercel concatenate, make-sequence, map and merge, subject to the
constraints on the type specifier agreeing with the required length of the result sequence.

Rationale: This allows implementors to make extensions of 'sequence, as seems to have been the
original intent.

Test Case: No portable test case.

Current Practice: Effectively compatible with both the standard as specified and this proposal,
as no implementation extends sequence| as of the time of writing.

http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence

Cost to Implementors: None.

Cost to Users: Minimal. Users can no longer have the guarantee that code of the form

(assert (typep (ignore-errors (make-sequence *x* 8))
>(or list vector)))

never causes the assertion to fail.
Cost of Non-Adoption: The specification remains inconsistent.
Benefits: A natural way of providing extensions for the sequence| type.

Aesthetics: Minimal.

References

Haible, B. (1988). The Abstract Datatype Sequence. Technical report, University of Karlsruhe.
http://tinyurl.com/yy3eys.

Haible, B. (2006). personal communication.

Pitman, K. and Chapman, K., editors (1994). Information Technology — Programming Language —
Common Lisp. Number 226-1994 in INCITS. ANSIL.

Pitman, K. M. (1991). Issue CONCATENATE-SEQUENCE. Technical report, ANSI. http://www.lisp.
org/HyperSpec/Issues/iss073-writeup.html.

Rhodes, C. (2007). User-extensible sequences. in preparation.

http://www.xach.com/clhs?q=sequence
http://tinyurl.com/yy3eys
http://www.lisp.org/HyperSpec/Issues/iss073-writeup.html
http://www.lisp.org/HyperSpec/Issues/iss073-writeup.html

	Introduction
	Issue CONCATENATE-SEQUENCE-AGAIN

