
Priority Queues for Common Lisp

Ingvar Mattsson
<ingvar@google.com>

Marco Antoniotti
<marco.antoniotti@unimib.it>

February 4, 2013

Keywords: Heap, Priority Queue, Common Lisp.

1 Introduction

This is a specification for the intruduction of a common API for priority queues,
also called heaps, in Common Lisp. The specification tries to take into account
the common elements present in the several implementations available on the
Internet, and to ensure that the API is generic enough to allow for the seamless
inclusion of particular flavors of heaps. An inspiration for this specification API
is [1], especially w.r.t., the discussion about Heaps and Fibonacci Heaps.

1.1 Rationale

There is no standard heap (or priority queue) implementation in the Common
Lisp standard. It is, however, a useful data structure. The intention of this
document is to provide a portable, flexible, heap API that can be used on
essentially all data where storing according to a ranking criterion makes sense.

This API specification carefully does not discuss how it behaves in a multi-
processing environment.

1.2 Guarantees

1.2.1 Time complexity

The heap data structure gives you O(1) peek at one extreme of the heap. It
also gives you O(lg n) addition and removal from the heap.

However, the O(lg n) insertion and removal relies on an O(1) comparison op-
erator. With having user-specified comparison (and key extraction) operators,
the best guarantee the reference implementation can give is that insertion and
removal is O(C lg n) for a comparator complexity of O(C).

1



1.2.2 Multi-processing

There are no explicit multi-processing or concurrency guarantees for the generic
heaps. However, implementors are encouraged to add recursive locks to each
heap object and lock/unlock these as necessary.

1.2.3 Side-effects

Any code that modifies an object currently present in a heap is likely to breach
the heap invariant. Doing that is highly discouraged. However, modifying
things within an object that does not, in any way, contribute to the value used
in comparisons may be safe.

1.3 Design Choices

There are a few design choices to be made when specifying an API for heaps.
The following is a list of foreseen issues and their tratment.

1.3.1 Heap Test must be a Total Order

There is no way for a Common Lisp implementation to check and ensure that
the function that becomes the heap test (cfr., the constuctor make-heap) is a
total order (modulo equality). Providing a function that does not represent a
total order has undefined consequences.

1.3.2 Equal Keys

The relative order to elements in a heap that admits equal keys is implementation
dependent and should not be relied upon.

2 Heaps Dictionary

2.1 Class heap

Class Precedence List:

heap, . . . , T

Description:

Any implementation of this specification will provide a class named heap.

Notes:

Each implementation is given the liberty to choose whether to use a
structure-class or a standard-class (or another full-blown CLOS class). This implies

that specialized

heaps can only

be derived via

single

inheritance.
2



2.2 Generic Function heap-p

Syntax:

heap-p object ⇒ generalized-boolean

Arguments and Values:

object – an object.

generalized-boolean – a generalized boolean.

Description:

This function returns NIL when called on a non-heap object and a non-null value
if presented with a heap object.

2.3 Slot Readers heap-size, heap-total-size,
heap-key-function, heap-test-function

Syntax:

heap-size heap ⇒ size
heap-total-size heap ⇒ total-size
heap-key-function heap ⇒ keyfun
heap-test-function heap ⇒ cmpfun

Arguments and Values:

heap – a heap.

heap-key-function – a function designator.

heap-test-function – a function designator.

size – a (positive) integer. Maybe be more

precise
total-size – a (positive) integer.

Maybe be more

precise
Description:

The heap-size and heap-total-size return the number of elements in the
heap

The heap-key-function and heap-test-function accessors return the test
function and the key function used by the heap implementation to maintain the
heap invariant.

3



2.4 Type heap-finger

Many operations on heaps require to “change” something that is located in a
certain “position” in the underlying data structure. To support these operations
the specification requires implementations to provide an opaque type named
heap-finger, i.e., to provide a way to keep a “finger” on a certain position
within the heap1.

As an example, a traditional implementation of heaps based on arrays could
define heap-finger as

(deftype heap-finger () ’fixnum)

Notes:

This specification does not prescribe anything in particular regarding the be-
havior of heap-fingers and the garbage collector. An implementation is free
to add a :weak key to the make-heap constructor (see below) and to return a
weak heap-finger, that works well with the garbage collector.

2.5 Function heap-finger-p

Syntax:

heap-finger-p object ⇒ boolean

Arguments and Values:

object – an object.

boolean – a boolean.

Description:

Returns T if object is a heap-finger, NIL otherwise.

2.6 Condition heap-error

Class Precedence List:

heap-error, simple-error, . . . , T

Description:

The root of specialized errors raised by the heap operations; the heap for which
the error is being signaled can be initialized with the keyword :heap and can
be read by the accessor heap-error-heap. The default for the underlying slot
is NIL.

1The term “finger” has been extensively used in the algorithms and data structure litera-
ture.

4



See Also:

heap-error-heap.

2.7 Function heap-error-heap

Syntax:

heap-error-heap heap-error ⇒ heap

Arguments and Values:

heap-error – a heap-error

heap – a heap.

Description:

Returns the heap associated to the condition heap-error or NIL if the slot is
uninitialized.

2.8 Condition empty-heap-error

Class Precedence List:

empty-heap-error, heap-error, . . . , T

Description:

The condition that may be signaled when certain operations are attempted on
an empty heap.

See Also:

heap-error-heap, heap-error.

2.9 Condition invalid-heap-finger-error

Class Precedence List:

invalid-heap-finger-error, heap-error, cell-error, . . . , T

Description:

The condition that may be signaled when certain operations are attempted
on an invalid “position” in a heap. The offending finger must be passed at
initialization time with the keyword :name.

5



See Also:

heap-error-heap, heap-error, heap-finger.

Notes:

invalid-heap-finger-error inherits from cell-error, hence, cell-error-name
is used to get the offending finger.

2.10 Condition invalid-key-error

Class Precedence List:

invalid-key-error, heap-error, . . . , T

Description:

The condition that may be signaled when certain operations are attempted with
an invalid “key” in a heap. The offending key is initialized using the :offender
keyword and can be retrieved by the invalid-key-error-offender function.

See Also:

invalid-key-error-offender, heap-error-heap, heap-error.

2.11 Function invalid-key-error-offender

Syntax:

invalid-key-error-offender i-k-e ⇒ key-object

Arguments and Values:

i-k-e – a invalid-key-error.

key-object – a object.

Description:

Given an instance of invalid-key-error, invalid-key-error-offender re-
turns the offending key-object associated with i-k-e.

2.12 Function make-heap

Syntax:

make-heap &key test key initial-size class initial-contents &allow-other-keys
⇒ heap

6



Arguments and Values:

test – a function designator for a binary function returning a generalized boolean;
default is <. Make it lt from

the Equality

CDR? :-) :-)key – an accessor for an object; default is identity.

initial-size – a positive fixnum; default is 16. Be maybe more

specific on the

integer type?class – a class designator ; the default is heap.

heap – an instance of the heap class or of any of its descendant classes.

Description:

Returns a newly created heap, using the specified test as the heap criterion,
using key to extract the values to be compared.

2.13 Generic Function empty-heap-p

Syntax:

empty-heap-p heap ⇒ boolean

Arguments and Values:

heap – a heap.

boolean – a boolean.

Description:

This function returns T when called on an empty heap, NIL otherwise.

2.14 Generic Function full-heap-p

Syntax:

full-heap-p heap ⇒ boolean

Arguments and Values:

heap – a heap.

boolean – a boolean.

7



Description:

This function returns T when no more values can be inserted in the heap, NIL
otherwise.

Certain versions of heaps are only limited by the systems memory limitations.
In these cases full-heap-p always returns NIL. Implementations are required
to document these cases.

2.15 Generic Function insert

Syntax:

insert heap value ⇒ value finger

Arguments and Values:

heap – a heap.

value – an object.

finger – a heap-finger.

Description:

Inserts a new value into the heap. The value inserted is returned alongside the
“location”, pointed by finger in which it was inserted.

2.16 Generic Functions extract, extract-from

Syntax:

extract heap &optional default error-if-empty ⇒ value This was

remove.extract-from heap finger &optional default ⇒ value

Arguments and Values:

heap – a heap.

finger – a heap-finger.

default – an object ; default is NIL.

error-if-empty – a generalized boolean; default is NIL.

value – an object.

8



Description:

extract removes and returns the value at the top of the heap, unless the heap
is empty. If the heap is empty and error-if-empty is NIL, default is returned;
otherwise an empty-heap-error error is signaled.

extract-from removes and returns the value present in the heap in “posi-
tion” finger. If the finger is invalid and error-if-empty is NIL, default is returned;
otherwise an invalid-heap-finger-error error is signaled.

Exceptional Situations:

The errors empty-heap-error and invalid-heap-finger-error are signaled
in the case described above.

2.17 Generic Function peek

Syntax:

peek heap &optional default error-if-empty ⇒ value

Arguments and Values:

heap – a heap.

default – an object ; default is NIL.

error-if-empty – a generalized boolean; default is NIL.

value – an object.

Description:

Returns the value at the top of the heap, without modifying the heap. If the
heap is empty and error-if-empty is NIL, default is returned; otherwise an error
of type empty-heap-error is signaled.

See Also:

empty-heap-error

2.18 Generic Functions change-key, decrease-key,
increase-key

Syntax:

change-key heap new-key finger ⇒ heap old-key new-finger
decrease-key heap new-key finger ⇒ heap old-key new-finger
increase-key heap new-key finger ⇒ heap old-key new-finger

9



Arguments and Values:

heap – a heap.

new-key – an object.

finger – a heap-finger.

old-key – an object.

new-finger – a heap-finger.

Description:

change-key changes the key corresponding to the heap entry at position finger
with new-key ; the heap is restructured as a consequence. The three values re-
turned are the restructured heap, the key (old-key) used before the change-key
had any effect on the heap structure, and the new-finger resulting after the
changes effected by change-key.

The generic functions decrease-key and increase-key, check that new-
key is, respectively, “smaller” or “greater” than old-key (the key associated
to finger). If the check succeeds, then the effect of the call is that of calling
change-key. If the check fails than an error of type invalid-key-error is So, do we or

don’t we call

change-key?

signaled.

See Also:

invalid-key-error.

Notes:

It is assumed that all implementations will actually wrap the actual heap inter-
nal data structure in a container shell of some kind. I.e., the heap is returned as
such, with only the inside structures changed as a consequence of change-key.

2.19 Generic Function fix-heap

Syntax:

fix-heap heap finger ⇒ heap new-finger

Arguments and Values:

heap – a heap.

finger – a heap-finger.

new-finger – a heap-finger.

10



Description:

This function is used to fix the heap invariant starting from a given finger. This
function should be used after changes to an object stored in the heap affecting
the heap invariant (cfr., (setf value-at)).

See Also:

(setf value-at).

2.20 Generic Functions key-at, value-at,
content-at, content-at*

Syntax:

key-at heap finger ⇒ key
value-at heap finger ⇒ value
(setf value-at) value heap finger ⇒ value
content-at heap finger ⇒ key, value
content-at* heap finger ⇒ content

Arguments and Values:

heap – a heap.

finger – a heap-finger.

key – an object.

old-key – an object.

value – an object.

content – a cons of the form (key . value).

Description:

As the names imply, key-at returns the key that can be found in the heap in
correspondence of the finger.
value-at returns the value that can be found in the heap in correspondence
of the finger. The setf form can be used to modify what is associated to key
in correspondence of the finger. No change in the underlying heap structure is
required. Therefore, in order to ensure that the heap invariants are maintained
after a (setf value-at) the user may have to call fix explicitely.
content-at returns two values: the key and the value that can be found in the
heap in correspondence of the finger. content-at* behaves like content-at
but it returns a dotted pair (key . value).

11



See Also:

fix-heap.

Notes:

Problems with (setf content-at) may arise when heap-key-function is
identity or conceivably similar cases. When this happens, then
(setf content-at) may violate the heap invariant.

2.21 Generic Functions merge-heaps, nmerge-heaps

Syntax:

merge-heaps heap1 heap2 &key &allow-other-keys ⇒ new-heap
nmerge-heaps heap1 heap2 &key &allow-other-keys ⇒ new-heap

Arguments and Values:

heap1 – a heap.

heap2 – a heap.

new-heap – a heap.

Description:

merge-heaps constructs a new-heap that contains all the values of heap1 and
heap2. The nmerge-heaps may destructively modify either heap1 or heap2 (or
both) and may return either in lieu of new-heap.

Notes:

It is understood that the performance guarantees for this operation depend on
the underlying implementation.

2.22 Generic Functions heap-keys, heap-values,
heap-contents

Syntax:

heap-keys heap &optional (result-type ’list) ⇒ result
heap-values heap &optional (result-type ’list) ⇒ result
heap-contents heap &optional (result-type ’list) ⇒ result

12



Arguments and Values:

heap – a heap.

result-type – a designator for a sequence type.

result – a sequence of type result-type

Description:

heap-keys returns a sequence of result-type containing the keys in the heap.
heap-values returns a sequence of result-type containing the values in the heap.
heap-contents returns a sequence of result-type containing pairs (key . value)
in the heap; i.e., with the default result-type of list, result is a association list.

Exceptional Situations:

A type-error is signaled if result cannot be coerced to a sequence of type
result-type.

Notes:

The content of result is not affected by interleaving change-key’s. Users cannot
make assumptions on the behavior.

References

[1] Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, and
C Stein, 3rded., MIT Press and McGraw-Hill, 2009.

[2] The Common Lisp Hyperspec, published online at
http://www.lisp.org/HyperSpec/FrontMatter/index.html, 1994.

A Copying and License

This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License (LPPL), either version 1.3 of this license or
(at your option) any later version. The latest version of this license is in
http://www.latex-project.org/lppl.txt and version 1.3 or later is part of
all distributions of LaTeX version 2005/12/01 or later.
This work has the LPPL maintenance status ‘maintained’.
The Current Maintainer of this work is Marco Antoniotti
<marco.antoniotti@unimib.it>.

13


